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A Mathemat ica l  Model  for Classification and Identification 

D. L e u s c h n e r  

Dresden, Germany 

Abstract: A unified model for classification and identification is presented by 
means of the theory of mathematical structures. The methodologies for 
classification and identification differ. For classification, an interchange scalar 
mechanism (ISCL) is proposed which improves the capacity of classifications 
irrespective of character weighting, the number of characters used, and the form of 
the clustering algorithm. It modifies a distance between two OTUs by considering 
their distances to their nearest neighbors. Formulas are developed for reliability, 
velocity, and capability of taxonomic keys. 

Keywords: Classification; Identification; Interchange scalar classifications; 
Numerical taxonomy; Taxonomic keys. 

1. Introduction 

The investigation of theoretical and practical problems in numerical 
taxonomy (Sheath and Sokal 1973) by means of mathematical (algebraical, 
analytical, and numerical) models leads to a conceptual framework in which 
both classification and identification may be performed. I use the term 
numerical taxonomy (NT) as an abbreviated term for mathematical models in 
taxonomy. The elementary taxa (e.g., varieties, species, genera) 
t l ,  t2  . . . . .  tN represent  a set T: t i e T where N is the n u m b e r  of  taxa. These  
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taxa define a space in which it is possible to perform both classification and 
identification. It is the purpose of this paper to provide effective and 
comprehensive examples of classification and identification by applying the 
theory of mathematical structures (Leuschner 1985). 

2. Numerical Taxonomic Methods 

In this section I furnish concise but sufficient definitions of some taxo- 
nomic terms. Taxonomic methodology is concerned with reducing the 
number of subsets in a given taxonomic set. The methods of numerical taxon- 
omy are applications of suitable lattice reduction algorithms. Reduction of 
the lattice in Figure 1 to the classi fication in Figure 2 is possible by calculat- 
ing a distance d(pl P2) and applying an algorithm to reduce the number of 
connections and points in the set. The exact definition of the taxonomic set 
and a number of useful axioms concerning it are given in Appendix 1. All 
classifications considered here will be hierarchic with nested sets of taxo- 
nomic units. 

These axioms in the Appendix 1 are necessary but not sufficient criteria 
by which to create classifications or taxonomic keys for identifying individual 
taxonomic units. Elementary taxa (synonymous with operational taxonomic 
units; Sneath and Sokal 1973) possess empirical descriptors, characters, and a 
number of questions concerning these come to mind. Which characters are 
we to choose? How are we to measure distances from these characters? 
What is the appropriate reduction algorithm? 

To answer these questions, I shall use a utilitarian approach. The ele- 
mentary taxa ti, i = 1,2 . . . . .  N, possess the characters m), j = 1,2 . . . . .  M. 
The characters mj assume values mjl(i) where 10') denotes the vector of states 
of character mj. When l(j) may assume an infinite number of values, it is 
termed a continuous character and when it may assume a finite number of 
values, it is termed discrete (see Leuschner 1974). The number of values of 
l(.j) is Lj or L, neglecting the index of character j. 

Define a character space CM of dimension M. Each axis is defined by a 
character and the axes are orthogonal. Points in the character space represent 
elementary taxa. In this space every taxon possesses M coordinates. A two- 
dimensional character space is shown in Figure 3, where m l is continuous 
and m 2 is discrete. A classification of the taxa (Figure 4) and a structure of a 
key to the four taxa (Figure 5) are not the same, i.e., while taxonomic 
classifications and taxonomic keys may be isomorphic, they need not be so, 
even though they have the same underlying number of taxa N. One obvious 
difference is that some of the terminal points of a key may be empty sets. 
Thus, the methodologies for classification and identification are different: 
their distance measures and lattice reduction algorithms should be 
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Figure 1. Represen ta t ion  o f  a t axonomic  space  P(T), with a set T o f  three taxa, T = [t I ,t2,ts } 
and possible links be tween  the e l emen t s  o f  7". 

P5 = { t l '  t2} ~ - -  t2' 

13l 

P2 = {tl} 
P 3  = { t 2 t  

Figure 2. An example of a taxonomic lattice (dendrogram) derived from Figure 1. A lattice 
reduction algorithm will omit links (p;) to form the lattice. 
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Figure 3. A two-d imens iona l  character  space with Four e lementary  taxa ( t l  t o / 4 ) .  Charac ter  
m 1 is cont inuous  and character  m2 is discrete. 

{t 1, t 2, t 3, t 4} 

{t l 

{t  I } {t2} {t3} It.~} 

Figure 4. A possible taxonomic classification for the 4 taxa in Figure 3. 
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{t 1 } it 2} {t B} 

Figure 5. A possible taxonomic key for the 4 taxa in Figure 3. Compare 
with Figure 4. 

{ta} 

appropriate. The capabilities of both classifications and keys will be func- 
tions not only of their purposes, but of the types of taxa and characters, of the 
numbers of taxa N, of the numbers of characters M, of the number of charac- 
ter states L, and of the structure of the classification or key. Moreover, as 
already accepted by virtually all systematists, the algorithm for creating a 
structure has an influence on the capability of the latter. The formulation of 
classifications and keys are discussed below under separate headings. 

3. Classification 

A taxonomic classification should be natural (in phenetics, the best 
reflection of overall similarity; in cladistics, the besl reflection of evolution- 
ary branching patterns), stable, predictive, and of high information content 
(see Sokal 1986). Most numerical methods define a distance d(pt P2) in 
character space (CM), using axiom system II1 (see Appendix 1 and Sneath and 
Sokal 1973). This procedure is equivalent to a map fiom the M-dimensional 
character space to a distance space, here termed R, which is formally one- 
dimensional. In R, every pair of  taxa possesses one coordinate value. 

To realize the desired qualities of a classification, most phenetic 
classification procedures employ simple, scalar classification procedures or 
SAHN methods (Sneath and Sokal 1973), the most frequently used being the 
UPGMA algorithm. In effect, a mathematical model operating on distances in 
this manner, neglects the location and direction of taxa in character space, 
and assumes that character space is homogeneous and isotropic (Figure 6A). 
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Figure 6. Taxonomic structure. A, An example of amorphous structure in the distribution of 
taxa in a two-dimensional character space. The points represent the locations of the taxa. B. 
An example of inhomogeneous and anisotropic structure in a two-dimensional character 
space. The plane represented by m I = a c o n s t a n t  serves to subdivide the taxa and is 
equivalent to a dichotomy in a taxonomic key. 

In other words, all locations and all directions in the space are equivalent. 
There is rarely justification for such an assumption and Figure 6B shows a 
character space that is distinctly inhomogeneous and anisotropic (e.g., 
Ostrander 1969), i.e., there are areas and directions showing points (taxa) and 
others showing no points. The biological mani fold manifold can be described 
as an inhomogeneous and anisotropic discontinuum in reference to the den- 
sity of taxa in the character space. 

There are methods that improve on simple scalar classification by 
accounting for the nature of character space. Character weighting (Sheath 
and Sokal 1973) is one such procedure. Another possibility, the approach to 
be developed here, is to use algorithms that interchange taxa in a 
classification. These are termed interchange scalar classifications (ISCL's). 
Under scalar interchange, Axiom system Ill of Appendix 1 is valid, but the 
distances are changed by interchanging taxa with surrounding taxa. The pro- 
cedure may be termed thermodynamic taxonomy where the process of inter- 
change itself is one "thermodynamic property." Another "thermodynamic 
property" is the increase in information gained by regarding taxa of different 
order than the one under consideration (Leuschner 1981, 1984; Zotin 1981, 
1982). An algorithmic description of the procedure, suitable for continuous 
or ordered multistate characters, follows: 

(1) Zero order ISCL (no interchanges permitted) 
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(2) 
The distances are constant: follow the UPGMA algorithm 
First order ISCL (nearest-neighbor interchanges permitted) 
(a) Take two taxa, p 1, P2 
(b) The nearest neighbors of P l and P2 are termed PI,, and p21,,, 

respectively. 
(c) Construct vectors representing the averages of all character 

states for the pairs of nearest neighbors, p],, and p~,,, giving a 
hypothetical auxiliary taxon PI2~. 

(d) Compute the distance between P l and P[2,, and between P2 and 

P]2,,. 
(e) Call these distances d(,Pl p~) and d(p2 Pa), respectively. 
(f) I f (d(pl  p,~) + d(p2 p.,)) > 2d(pl P2) (Figure 7 and Appendix 2), 

then do not change d(p 1 Pc). Select two taxa ~p  1, P2 and go to 
(b) 

(g) Else, reduce the distance d(Pl P2) in R by a f ac to r f  = (d(Pl Pa) 
+ d(P2 p,~)) / 2d(pl P2) (Figure 7). 

(h) Select two taxa ;~ p i, P2 and go to (b) 
(i) When all distances have been transformed, follow the UPGMA 

algorithm. The locations of the clusters must be computed from 
the original values of the elementary taxa, not from the means of 
the transformed distances. 

(3) Second order ISCL (nearest-neighbor and second-nearest-neighbor 
interchanges permitted). 
(a) For each taxon Pi considered, take into account both the nearest 

neighbor and the second nearest neighbor, Pi,,,1, Pin,2. 
(b) Calculate the averages for the M character states forpln,1, P ln,2 

and for p2,,,1, p2,, 2. 
(c) Find the average for these two vectors of all M character states 

to obtain a hypothetical auxiliary taxon p 12~. 
(d) Test and reduce the distance d ( p l p 2 )  using the factor f in the 

same way as for first order ISCL. Transform all distances and 
follow the UPGMA algorithm. 

Third and higher order ISCL is performed in a fashion analogous to second 
order ISCL. In the case where the number of the surrounding taxa excluding 
P 1 and P2 is odd, the last taxon, the residual neighbor taxon when all other 
taxa are attributed to Pl or p2, respectively, should be attributed to both Pl  
and P2. 

The interchange procedure described above is an attempt to improve 
the capability of classifications irrespective of character weighting, the 
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number of  characters used, the form of clustering algorithm used, and so on 
(Smimov 1968, 1969). The model is an agglomerative procedure that results 
in a hierarchy with rank order, and phylogenetic interpretation is possible (see 
Sokal 1984). This thermodynamic approach may be improved by employing 
distance functions based on information theory (Schwartz 1963; Leuschner 
and Heine 1973; Leuschner 1974). Further properties of ISCL and applica- 
tions will be furnished in a subsequent paper. 

Using ISCL procedures, it is possible to measure the capability of  a 
classification as: 

c7~ = a In n (1) 

where a is a constant and n is the order of the ISCL procedure. Note the loga- 
rithm. It is of similar significance as in Boltzmann's formula in thermo- 
dynamics (Leuschner 1979). The measure in equation (1) is comparable only 
for classifications of the same set of elementary taxa and ISCL procedures of 
different orders. Moreover, high capability matches high information content 
and high information content matches high reliability. Note that when there 
are an even number of taxa, the maximum value of crc is: 

CTC,max = a Ira n , ~  x 

= a l n ( ( N - 2 )  2) 

=a ln(N / 2 - 1 ) .  (2) 

Here, nmax is only possible in the first step of an ISCL procedure. 

4. Identification 

If a determination must be made at all taxonomic ranks then a taxo- 
nomic key must be equivalent to a taxonomic classification. One problem of 
identification is to find a suitable set of characters at all dichotomies of a 
classification. Another approach is to find only those characters necessary to 
determine the lowest taxonomic rank of a specimen. There is conflict 
between the certainty of  identification (best served by as many characters as 
possible) and ease of  identification (best served by as few characters as possi- 
ble). The velocity and reliability of identification are complementary 
(Leuschner and Svifidov 1986; Svifidov and Leuschner 1986). Identification 
differs from classi fication in that new, unknown taxa, not used in the original 
construction of a classification are tested against it. 

The classification procedures described above are agglomerative (cf. 
divisive clustering, Sneath and Sokal 1973), but one approach to 
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identification proceeds from the set {tl , t  z . . . . .  tN} to the elementary taxa 
{tt},{t2} . . . . .  {tN}, a divisive process. Assume that the number of charac- 
ters M > the number of  taxa N. In character space, the equation 
mj  = cons tan t  defines a hyperplane that divides the space (e.g., Figure 6B). 
This hyperplane is equivalent to a set of distances that are the projections of  
the taxa {t;} onto m). Using this definition, one may create structures that 
employ distances that fulfill Axiom system III of Appendix I. One may 
proceed to find a set of hyperplanes that separate all of the individual taxa, 
resulting in a monothetic, divisive key. If no single character will unambigu- 
ously define a branching point, further characters may be used, resulting in a 
partially polythetic key. Other identification approaches need not be divisive. 
There are extensive Bayesi~m and distance-based identification systems 
where an unknown taxon u is identified with the closest taxon of an esta- 
blished classification (see Sheath and Sokal, 1973, for examples). 

The formulae for certainty and ease of  identification may be 
represented symbolically (see also Appendix 3): Define reliability Z, as 

N 
Z = ~'~ Pi (wj (mw)t~ (3) 

i=1 

and velocity V as 

N 
V = ( Z  pi('~j (ITlT)l~ (4) 

i=1 

where N is the number of  taxa, Pi is the probability that elementary taxon i 
will be identified correctly, wj is the probability of errorless passage through 
j, j is the character for the first branching point in the key, m w  is the average 
probability of  errorless passage through the remaining characters (excluding 
character j), N" is the number of taxa of the group in which elementary taxon 
i lies after its errorless passage through j, "~) is the cost (e.g., time) spent work- 
ing with character j ,  m x  is the average cost for the remaining characters, and 
log is log z. 

Further, we may define the capability of a taxonomic key 

CTK = bZ  + d V  (5) 

where b and d are constants. To maximize CTK one may apply Lagrangian 
formalism, the mathematical method of seeking an extremum under an addi- 
tional condition. For example, where V is a constant, let b = 1 and d is the 
Lagrangian multiplier. Ignoring Z, CTK = dV, and from this it is possible to 
calculate a maximum value for C'rx. V is maximized when "r is minimized for 
all elementary taxa, and "t is minimized if all paths from the set 
{ t l , t 2  . . . . .  t~v} to the elementary taxa are equally short (Figure 5). The 
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number of characters q that must be tested is minimized. When the number of 
taxa is a power of 2, the minimum value o f q  is an integer because 

qmin = log2 N (6) 

The maximum value o fc rx  is: 

CTK,max = d (1/log2 N) (7) 

where d" is a constant. 

5. Discussion and Conclusions 

There is no general thcory for seeking a best lattice reduction algorithm 
and there is no general law that will describe the capability of  a classification 
or taxonomic key as a function of N, M, L, and parameters describing the 
operations in classi fication and identification. Only for special cases is it pos- 
sible to compare different classifications and identifications. There are impor- 
tant differences between classifications and keys that define the best ways in 
which to build them. Classification often is agglomerative, while 
identification is inherently a divisive process that must account for both 
efficiency and reliability. The use of computers greatly reduces the need for 
efficiency in the construction of  keys, in which case they may become similar 
to the classifications on which they are based. Identification based on 
classifications will furnish considerably more information at each node in the 
search procedure than would taxonomic keys, whose branch points are fre- 
quently based on single characters only. 

In numerical taxonomy, critical considerations relate to pair-group 
clustering cycles, dichotomous branching patterns, and the complementary 
nature of reliability and velocity. Progress in numerical taxonomy may be 
identified by the discovery of general laws for finding suitable lattice reduc- 
tion algorithms, or the computation of indices for the capability of 
classifications and keys that makes the comparison of algorithms possible. 
Such progress is conditional on the training of taxonomists (Heywood 1975) 
to take advantage of  mathematical and operational advances. 

Appendix 1. 

Define a set P = P (T), the set of subsets of T, termed the power set of  T, 
where Pk E P(T) .  Then, for example, when T = {tl ,t2,t3}, P ( r ) =  {0, {t~ }, 
{t2}, {t3}, {tl,t2}, {tl,t3}, {t2,t3}, { t t , t2 , t3}} .  When these subsets fulfill 
an additional criterion--their members have close relationships to one 
another--they are called taxa or clusters. 
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The notations { } and 0 mean set and empty set, respectively. Two 
operations are declared in P: set union, denoted u and set intersection, 
denoted n .  The notation .AND. and .OR. indicate the logical " and"  and the 
logical "or" ,  respectively, and := means "equal by definition". The term iff 
means " i f  and only i f"  and ~ means "implies". The following axioms shall 
be valid f o r p l , p 2 , p 3  ~ P(T): 

Axiom System I: Forms of Clustering 

(1) both intersection and union in P(T) are unique: 

Pl  ~ P z  := { te  T: t e  Pt .AND. t e  P2} 

Pl u p z  := { te  T: t e  Pl .OR. t e  P2} 

(2) the commutative law: 

p~ rip2 = { te  T: t e  pl  .AND. t e  P2} 

= {re T : t ~ p 2 . A N D .  t e p l }  

= p 2 ~ p l  

Pl LgP2 = P 2 U P l  

(3) the associative law: 

Pl  ~(P2 r~P3) = 0Vl n P 2 ) ~ P 3  

Pl Ld(P2 u p 3 )  = (Pl U P z ) w P 3  

(4) the absorption law: 

Pl ~ ( P l  u p z )  = P l  

Pl  u ( p l  n p 2 )  =p~ 

Further, p 1 -<P2/ff(t~ Pl =:~ t e  Pz) 

Axiom System II: Hierarchical Clustering 

(1') the law of reflexivity: 

Pt  <PI  

(2') thelaw oftransivity: 

Pl <P? .AND.p2 <P3 ~ P l  =P3 
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(3') the law ofantisymmetry: 

Pl <-P2 -AND.p2 <-Pl ~ P l  = P 2  

Lastly, let d(p lP2) be the distance between p I and P2, where d(p lP2) > 0 for 
all P l :~P2- (We  shall restrict d to being positive semidefinite). 

Axiom System III: Sequential and Nonoveflapping Clustering 

(1")  the law of identity: 

d(p lPz) = 0 iffp 1 = P2 

(2")  the law of symmetry: 

d(p IPz) - d(pzp 1) 

(3")  the triangle inequality: 

d(p lP2) -< d(p lP3) + d(p3p2) 

In summary, Axiom System I represents a lattice (a specific algebraic struc- 
ture), Axiom System II sets up a partial ordering structure (a specific order 
structure), and Axiom System III defines a metric space (a specific topologi- 
cal structure). The example in Figure 1, T = {t l , tz , t3} ,  shows that Axiom 
Systems I and II are compatible. A lattice can be represented by a graph 
where 0 is the empty set or zero element and {tt ,tz,t3 } is the unit element of 
the lattice. 

Axiom System III may be represented by an algorithm that reduces the 
number of connections in the lattice. A lattice such as the one in Figure 1 
may be reduced to a taxonomic lattice, that is, a classification (Figure 2) or a 
key to be used for identification. The type of taxonomic lattice, a 
classification or key, and the form of the reduction algorithm, depend on the 
choice of d(PlP2) in Axiom System III and on the limit for the distance in 
P(T). 

Appendix 2. 

A two-dimensional paradign-n for some step of a first order ISCL- 
procedure is shown in Figure 7. We consider the two taxa P l and P2 with 
their nearest neighbors Pln and p~,,, respectively. We consider the following 
distance transformation. The distance d(p 1P2) is claimed to be equal to the 
semi-major axis a of an ellipse for which by definition e 2 = a 2 - b  2 holds. 
By setting e = a / 2  = d ( p l p 2 ) / 2  one obtains the semi-minor axis 
b = ~ 2 a / 2 .  Thus we have an ellipse characterized by gk + hk = g + h = 
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b I �9 plI: 

A2 
g~ h~ 

~__~-i-~ ~p 2 

Figure  7. Geomet r i c  re la t ionships  o f  neares t  ne ighbors  in lirst order ISCL. In this example ,  

P l and P2 are the two taxa being considered.  Thei r  ne:~rest ne ighbors  are p l l, , and p ~  respec-  
tively. The  average  vector  for these two points  is shown  as pl2.. The  d is tances  

g + h = 2 d ( p i p 2  ) and the curve  transcribed by g and h is an ellipse. 

2 d(plp2)  as in Figure 7. We can compute the auxiliary ta• p12n = P~. If 
Aes - area A (A 1A 2B 2B i A 1 ), then 

pl, , ,p~,,~ AES = {p I - d ( p l p 2 ) / 2  <x  < + d ( p l p 2 ) / 2 ,  

- ~ d ( p l P 2 ) z - x 2 / 2  < y  < + ~ d ( p l p z ) 2 - x 2 / 2  } (a) 

and it follows that: 

d(p lPa) + d(P2Pa) < 2d(p lP2) (b) 

We define de, as the critical agglomeration distance in the cluster step 
under consideration. Furthemaore, we set in the cxample d(PlP2)  = 1, 
d(p IP],,) = 0.38, d(pzp~,,) = 0.23, dcr -- 3/4. Therefore we obtain 

d(p lPa) + d(pzPa) ~ 1.03 > 0.75 

f -~ (d(plPa) + d(pzPa)) /2d(plp2)  =- 1.03/2 ~ 0.52 < 0.75. 

The transformed distance d~, is 

dtr(plP2) =fd(plP2.)  -- 0.52d(p iP2) = 0.52 < dcr < d ( P l P2 ) .  

Because d~r(plP2)< de,. an agglomeration takes place in this cluster 
step, although d(p lP2)  > dcr. In the case ofpl~, and p~), we obtain the same 
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Pa. Though condition (a) is valid no transformation is made, because condi- 
tion (b) is violated. The procedure given above can be generalized to many 
dimensions and other character types. 

Appendix 3. 

The following is a justification for formulas (3) and (4). The fundamen- 
tal idea is that the decision at the first branching point is the most important 
decision of  the key. Two examples will make this clear. The first is a case 
where the two taxa following the first branching point are an elementary 
taxon on one branch and an important taxon of high rank containing the bal- 
ance of  elementary taxa on the other branch. As a second example we ima- 
gine the case of  two taxa of relatively high rank following the first branching 
point, both containing approximately the same number of elementary taxa. In 
these two cases and others we obtain much information after passing the first 
branching point. We, therefore, prefer the first branching point in formulas 
(3) and (4). 
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